Cotype of Some Banach Spaces
نویسنده
چکیده
Type and cotype are computed for Banach spaces generated by some positive sublinear operators and Banach function spaces. Applications of the results yield that under certain assumptions Clarkson’s inequalities hold in these spaces.
منابع مشابه
Embeddings of Proper Metric Spaces into Banach Spaces
We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...
متن کاملOn metric characterizations of some classes of Banach spaces
The first part of the paper is devoted to metric characterizations of Banach spaces with no cotype and no type > 1 in terms of graphs with uniformly bounded degrees. In the second part we prove that Banach spaces containing bilipschitz images of the infinite diamond do not have the RadonNikodým property and give a new proof of the Cheeger-Kleiner result on Banach spaces containing bilipschitz i...
متن کاملStructural properties of weak cotype 2 spaces
Several characterizations of weak cotype 2 and weak Hilbert spaces are given in terms of basis constants and other structural invariants of Banach spaces. For finite-dimensional spaces, characterizations depending on subspaces of fixed proportional dimension are proved.
متن کاملEmbeddings of Locally Finite Metric Spaces into Banach Spaces
We show that if X is a Banach space without cotype, then every locally finite metric space embeds metrically into X.
متن کاملRademacher and Gaussian Averages and Rademacher Cotype of Operators between Banach Spaces
A basic result of B. Maurey and G. Pisier states that Gaussian and Rademacher averages in a Banach space X are equivalent if and only if X has finite cotype. We complement this for linear bounded operators between Banach spaces. For T ∈ L(X, Y ), let %(T |Gn,Rn) be the least c such that ( E‖ n ∑ k=1 Txkgk‖ )1/2 ≤ c ( E‖ n ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004